迭代
如果给定一个list或tuple,set,我们可以通过for循环来遍历这个list或tuple,set,这种遍历我们称之为迭代(iteration)
在python中,迭代是通过for…in..来完成的,而很多语言比如c语言,迭代list是通过下标完成的,比如java代码:
1 | for (i=0; i<list.length; i++) { |
可以看出,Python的for循环抽象程度要高于C的for循环,因为Python的for循环不仅可以用在list或tuple上,还可以作用在其他可迭代对象上。
list这种数据类型虽然有下标,但很多其他数据类型是没有下标的,但是,只要是可迭代对象,无论有无下标,都可以迭代,比如dict就可以迭代:
1 | >>> d = {'a': 1, 'b': 2, 'c': 3} |
因为dict的存储不是按照list的方式顺序排列,所以,迭代出的结果顺序很可能不一样。
默认情况下,dict迭代的是key。如果要迭代value,可以用for value in d.values(),如果要同时迭代key和value,可以用for k, v in d.items()。
由于字符串也是可迭代对象,因此,也可以作用于for循环:
1 | >>> for ch in 'ABC': |
所以,当我们使用for循环时,只要作用于一个可迭代对象,for循环就可以正常运行,而我们不太关心该对象究竟是list还是其他数据类型。
那么,如何判断一个对象是可迭代对象呢?方法是通过collections模块的Iterable类型判断:
1 | >>> from collections import Iterable |
最后一个小问题,如果要对list实现类似Java那样的下标循环怎么办?Python内置的enumerate函数可以把一个list变成索引-元素对,这样就可以在for循环中同时迭代索引和元素本身:
1 | >>> for i, value in enumerate(['A', 'B', 'C']): |
上面的for循环里,同时引用了两个变量,在Python里是很常见的,比如下面的代码:
1 | >>> for x, y in [(1, 1), (2, 4), (3, 9)]: |
列表生成式
列表生成式即list comperehensions,是python内置的非常简单却强大的可以用来创建list的生成式。
举个例子,要生成list [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]可以用list(range(1, 11)):
1 | list(range(1, 11)) |
但如果要生成[1x1, 2x2, 3x3, …, 10x10]怎么做?方法一是循环:
1 | >>> L = [] |
但是循环太繁琐,而列表生成式则可以用一行语句代替循环生成上面的list:
1 | >>> [x * x for x in range(1, 11)] |
写列表生成式时,把要生成的元素x * x放到前面,后面跟for循环,就可以把list创建出来,十分有用,多写几次,很快就可以熟悉这种语法。
for循环后面还可以加上if判断,这样我们就可以筛选出仅偶数的平方:
1 | >>> [x * x for x in range(1, 11) if x % 2 == 0] |
还可以使用两层循环,可以生成全排列:
1 | >>> [m + n for m in 'ABC' for n in 'XYZ'] |
三层和三层以上的循环就很少用到了。
运用列表生成式,可以写出非常简洁的代码。例如,列出当前目录下的所有文件和目录名,可以通过一行代码实现:
1 | >>> import os # 导入os模块,模块的概念后面讲到 |
for循环其实可以同时使用两个甚至多个变量,比如dict的items()可以同时迭代key和value:
1 | >>> d = {'x': 'A', 'y': 'B', 'z': 'C' } |
因此,列表生成式也可以使用两个变量来生成list:
1 | >>> d = {'x': 'A', 'y': 'B', 'z': 'C' } |
最后把一个list中所有的字符串变成小写:
1 | >>> L = ['Hello', 'World', 'IBM', 'Apple'] |
练习
如果list中既包含字符串,又包含整数,由于非字符串类型没有lower()方法,所以列表生成式会报错:
1 | >>> L = ['Hello', 'World', 18, 'Apple', None] |
使用内建的isinstance函数可以判断一个变量是不是字符串:
1 | >>> x = 'abc' |
生成器
通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。
所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在python中,这种一边循环一边计算的机制,称为生成器:generator。
要创建一个generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的[]改成(),就创建一个generator:
1 | >>> L = [x * x for x in range(10)] |
创建L和g的区别仅在于最外层的[]和(),L是一个list,而g是一个generator。
我们可以直接打印出list的每一个元素,但我们怎么打印出generator的每一个元素呢?
如果要一个一个打印出来,可以通过next()函数获得generator的下一个返回值:
1 | >>> next(g) |
我们讲过,generator保存的是算法,每次调用next(g),就计算出g的下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出StopIteration的错误。
当然,上面这种不断调用next(g)实在是太变态了,正确的方法是使用for循环,因为generator也是可迭代对象:
1 | >>> g = (x * x for x in range(10)) |
所以,我们创建了一个generator后,基本上永远不会调用next(),而是通过for循环来迭代它,并且不需要关心StopIteration的错误。
generator非常强大。如果推算的算法比较复杂,用类似列表生成式的for循环无法实现的时候,还可以用函数来实现。
比如,著名的斐波拉契数列(Fibonacci),除第一个和第二个数外,任意一个数都可由前两个数相加得到:
1, 1, 2, 3, 5, 8, 13, 21, 34, …
斐波拉契数列用列表生成式写不出来,但是,用函数把它打印出来却很容易:
1 | def fib(max): |
但不必显式写出临时变量t就可以赋值。
上面的函数可以输出斐波那契数列的前N个数:
1 | >>> fib(6) |
仔细观察,可以看出,fib函数实际上是定义了斐波拉契数列的推算规则,可以从第一个元素开始,推算出后续任意的元素,这种逻辑其实非常类似generator。
也就是说,上面的函数和generator仅一步之遥。要把fib函数变成generator,只需要把print(b)改为yield b就可以了:
1 | def fib(max): |
这就是定义generator的另一种方法。如果一个函数定义中包含yield关键字,那么这个函数就不再是一个普通函数,而是一个generator:
1 | >>> f = fib(6) |
这里,最难理解的就是generator和函数的执行流程不一样。函数是顺序执行,遇到return语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用next()的时候执行,遇到yield语句返回,再次执行时从上次返回的yield语句处继续执行。
举个简单的例子,定义一个generator,依次返回数字1,3,5:
1 | def odd(): |
调用该generator时,首先要生成一个generator对象,然后用next()函数不断获得下一个返回值:
1 | >>> o = odd() |
可以看到,odd不是普通函数,而是generator,在执行过程中,遇到yield就中断,下次又继续执行。执行3次yield后,已经没有yield可以执行了,所以,第4次调用next(o)就报错。
回到fib的例子,我们在循环过程中不断调用yield,就会不断中断。当然要给循环设置一个条件来退出循环,不然就会产生一个无限数列出来。
同样的,把函数改成generator后,我们基本上从来不会用next()来获取下一个返回值,而是直接使用for循环来迭代:
1 | >>> for n in fib(6): |
但是用for循环调用generator时,发现拿不到generator的return语句的返回值。如果想要拿到返回值,必须捕获StopIteration错误,返回值包含在StopIteration的value中:
小结
generator是非常强大的工具,在Python中,可以简单地把列表生成式改成generator,也可以通过函数实现复杂逻辑的generator。
要理解generator的工作原理,它是在for循环的过程中不断计算出下一个元素,并在适当的条件结束for循环。对于函数改成的generator来说,遇到return语句或者执行到函数体最后一行语句,就是结束generator的指令,for循环随之结束。
请注意区分普通函数和generator函数,普通函数调用直接返回结果:
1 | >>> r = abs(6) |
generator函数的“调用”实际返回一个generator对象:
1 | >>> g = fib(6) |
迭代器
我们已经知道,可以直接作用于for循环的数据类型有以下几种:
一类是集合数据类型,如list、tuple、dict、set、str等;
一类是generator,包括生成器和带yield的generator function。
这些可以直接用于for循环的对象统称为可迭代对象:Iterable。
可以使用isinstance()判断一个对象是否是Iterable对象:
1 | >>> from collections import Iterable |
而生成器不但可以作用于for循环,还可以被next()函数不断调用并返回下一个值,直到最后抛出StopIteration错误表示无法继续返回下一个值了。
可以被next()函数调用并不断返回一个值的对象称为迭代器:Interator。
可以使用isinstance()判断一个对象是否是Iterable对象:
1 | >>> from collections import Iterator |
生成器都是Iterator对象,但list、dict、str虽然是Iterable(可迭代对象),却不是Iterator(迭代器对象)
把list、dict、str等Iterable变成Iterator可以使用iter()函数:
1 | >>> isinstance(iter([]), Iterator) |
你可能会问,为什么list、dict、str等数据类型不是Iterator?
这是因为python的Iterator对象表示的是一个数据流,Iterator对象可以被next()函数调用并不断返回下一个数据,直到没有数据时抛出StopIneration错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()函数实现按需计算下一个数据,所以Iterator的计算是惰性的,只有在需要返回一个数据时它才会计算。
Iterator甚至可以表示一个无限大的数据流,例如全体自然数,而使用list是永远不可能存储全体自然数的。
小结
凡是可作用于for循环的对象都是Iterable类型;
凡是可作用于next()函数的对象都是Iterator类型,它们表示一个惰性计算的序列;
集合数据类型如list、dict、str等是Iterable但不是Iterator,不过可以通过iter()函数获得一个Iterator对象。
Python的for循环本质上就是通过不断调用next()函数实现的,例如:
1 | for x in [1, 2, 3, 4, 5]: |